Intraparticle donor-acceptor dyads prepared using conjugated metal-ligand linkages.

نویسندگان

  • Bruce D Phebus
  • Yi Yuan
  • Yang Song
  • Peiguang Hu
  • Yashar Abdollahian
  • Qing-Xiao Tong
  • Shaowei Chen
چکیده

Ruthenium nanoparticles were stabilized by the self-assembly of 1-decyne forming ruthenium-vinylidene interfacial bonds and further functionalized by metathesis reactions with 4-ethynyl-N,N-diphenylaniline (EDPA) and 9-vinylanthracene (VAN). Photoluminescence studies of the resulting bifunctionalized Ru(EDPA/VAN) nanoparticles showed that as both ligands were bound onto the nanoparticle surface, effective mixing of the π electrons occurred leading to the appearance of excitation and emission profiles that were completely different from those of ruthenium nanoparticles functionalized with only EDPA or VAN. Furthermore, in photoelectrochemical studies, the EDPA moieties exhibited a pair of well-defined voltammetric peaks in the dark, which were ascribed to the redox reaction involving the formation of cationic radicals; however under UV photoirradiation the voltammetric features diminished markedly. These results strongly suggest that the particle-bound EDPA and VAN moieties behaved analogously to those of conventional molecular dyads based on the same electron-donating and -accepting units, where the intraparticle charge transfer was facilitated by the conjugated metal-ligand interfacial bonds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-order nonlinear polarizability of ferrocene-BODIPY donor-acceptor adducts. Quantifying charge redistribution in the excited state.

A series of dyads and triads using ferrocene (Fc) as the donor and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as the acceptor, linked either directly or through an N-phenylmethanimine or ethynylbenzene linker have been synthesized. While the former (directly linked) dyads were prepared through acid catalyzed condensation of pyrrole with ferrocenecarboxaldehye or 1,1'-ferrocenedicarboxa...

متن کامل

Intraparticle charge delocalization of carbene-functionalized ruthenium nanoparticles manipulated by selective ion binding.

Olefin metathesis reactions of carbene-stabilized ruthenium nanoparticles were exploited for the incorporation of multiple functional moieties onto the nanoparticle surface. When the nanoparticles were cofunctionalized with 4-vinylbenzo-18-crown-6 and 1-vinylpyrene, the resulting particles exhibited fluorescence characteristics that were consistent with dimeric pyrene with a conjugated chemical...

متن کامل

Bi-diketopyrrolopyrrole (Bi-DPP) as a novel electron accepting compound in low band gap π-conjugated donor–acceptor copolymers/oligomers

The synthesis and characterization of a novel 2,5-diketopyrrolo[3,4-c]pyrrole(DPP)-based accepting building block with the scheme DPP-neutral small linker-DPP (Bi-DPP) is presented, which was utilized as electron accepting moiety for low band gap π-conjugated donor-acceptor copolymers as well as for a donor-acceptor small molecule. The electron accepting moiety Bi-DPP was prepared via a novel s...

متن کامل

Charge Transport and Rectification in Donor−Acceptor Dyads

Organic, conjugated donor−acceptor (D−A) systems are essential components of photovoltaic devices. Design and optimization of D−A systems is typically based on trial-and-error experimentation methods that would benefit from fundamental physical insights on structure−function relationships at the molecular level. Here, we implement a nonequilibrium Green’s function methodology at the density fun...

متن کامل

Design and Synthesis of Aviram-Ratner-Type Dyads and Rectification Studies in Langmuir-Blodgett (LB) Films.

The design and synthesis of Aviram-Ratner-type molecular rectifiers, featuring an anilino-substituted extended tetracyanoquinodimethane (exTCNQ) acceptor, covalently linked by the σ-spacer bicyclo[2.2.2]octane (BCO) to a tetrathiafulvalene (TTF) donor moiety, are described. The rigid BCO spacer keeps the TTF donor and exTCNQ acceptor moieties apart, as demonstrated by X-ray analysis. The photop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 40  شماره 

صفحات  -

تاریخ انتشار 2013